

2022 DOE Vehicle Technologies Office Annual Merit Review

Heterogeneous Integration Technologies for High-Temperature, High-Density, Low-Profile Power Modules of Wide Bandgap Devices in Electric-Drive Applications

PI: Guo-Quan (GQ) Lu; Co-PIs: Rolando Burgos and Khai Ngo Virginia Tech

Project ID: elt242

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April 1st, 2019
- Project end date: March 31st, 2024
- Percent complete: 60%

Budget

- > Total project funding: \$1.5 M
- Funding for FY 2020: \$0.3 M
- > Funding for FY 2021: \$0.3 M
- Funding for FY 2022: \$0.3 M

Barriers and Technical Targets

- ➤ Module Packaging: high-performance bonding materials and assembly technologies (planar, double-sided cooling) for making high-temperature (> 200 °C) power modules to enable high converter power density (> 100 kW/L);
- ➤ Gate Driver: high-temperature (> 200 °C) intelligent gate driver with integrated current sensor; high-temperature (> 200 °C) gate driver power supply with air-core transformer.

Partners

- > Virginia Tech Lead
- Oak Ridge National Laboratory (ORNL)
- National Renewable Energy Laboratory (NREL)
- > DOWA
- University of Arkansas
- > SUNY Polytechnic Institute

Relevance and Objectives

> Goal

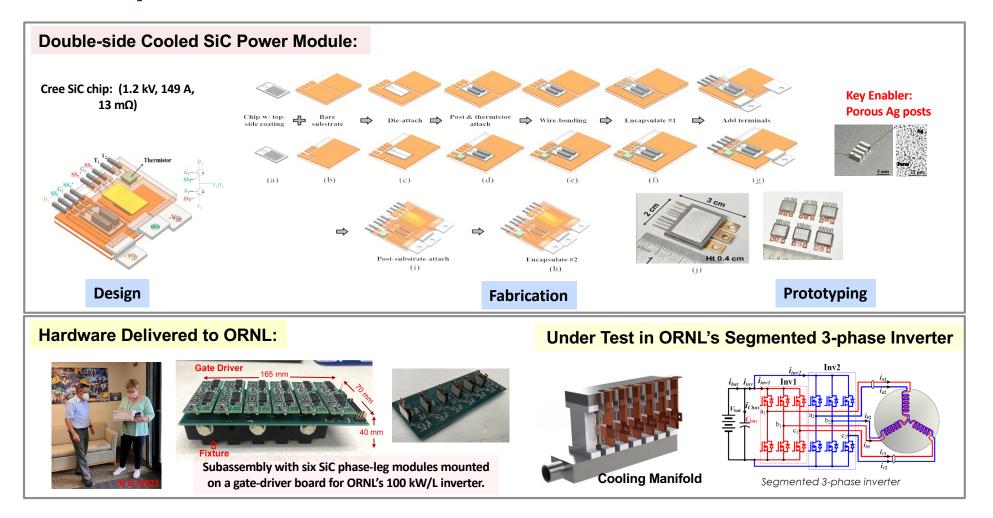
✓ Develop packaging materials, assembly processes, and circuit technologies for making > 200°C WBG power modules with double-sided cooling capability and intelligent gate drivers with integrated current sensor.

> Impact

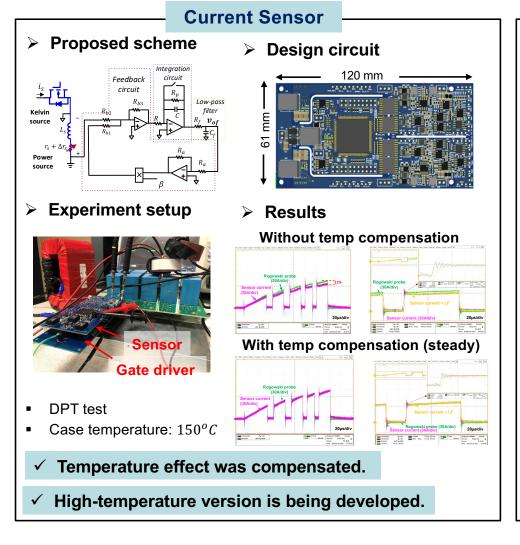
✓ Enable the EDT consortium to achieve its targets on performance, cost, power density, and reliability of a 100 kW traction drive system.

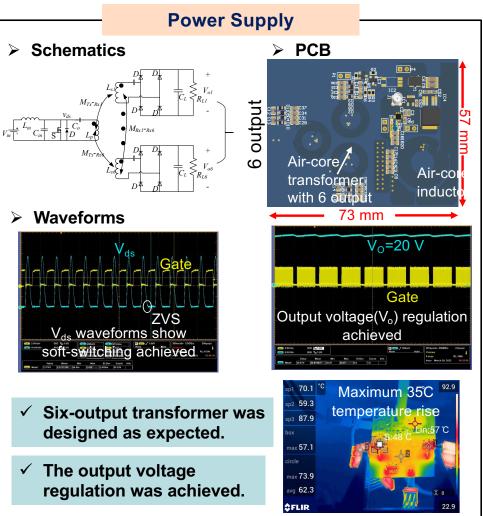
> Project Objectives

- ✓ Develop a low-cost packaging technology for making double-side cooled WBG (SiC/GaN) power modules with parasitic inductances < 5 nH, heat flux density > 400 W/cm², and working junction temperature > 200 °C.
- ✓ Design and prototype > 200 °C gate drivers with parasitic-inductance based current sensor and protection for module integration.



Approach


- ➤ **Proposed Research:** Design, fabrication, and testing of planar WBG power modules and their integration with gate drivers for electric drives.
- ➤ **Technology Summary:** Low parasitic & double-side cooled module fabrication; interconnection by silver-sintering; parasitic-inductance based current sensor integrated in gate driver; air-core transformer for driver power supply.
- ➤ Challenges & Opportunities: Prototyping yield for design verification; through materials and assembly engineering → low-cost manufacturing


Date	Go/No-Go Milestones	Status
3/31/2021	Demonstrate planar packaging technologies in phase-leg modules of (1200 V, 100-150 A) SiC MOSFET.	Done
9/30/2021	Deliver low-profile 150 °C gate driver boards to ORNL for demo inverter construction.	Done
9/30/2021	Deliver planar, double-side-cooled SiC (1200 V, 100-150 A, 150°C) SiC phase-leg modules to ORNL for demo inverter construction.	Done
9/30/2021	I_phase sensor redesigned for operation at ambient temperature of 150°C and higher	Done
6/30/2022	Prototype and test 200°C power supply for all gate drivers; package and test with gate driver board and power module	On-track

Accomplishments – Double-Side Cooled Power Modules

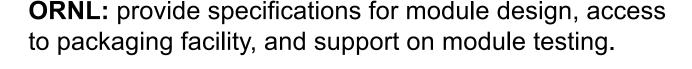
Accomplishments – Current Sensor and Power Supply

Summary

- **Relevance:** enable the EDT consortium to achieve its targets on performance, cost, power density, and reliability of a 100 kW traction drive system.
- > **Approach:** research, develop, and evaluate packaging technologies for making high-temperature, high-density, and low-profile wide-bandgap (WBG) power electronics modules with intelligent gate driver and current sensor.

> Deliverables:

- Working prototypes of double-side cooled SiC (1.2 kV, 149 A, 13 mΩ) phase-leg modules and their gate drivers to ORNL for demonstrating a 100 kW/L inverter.
- Module design and simulation results, materials processing conditions, assembly procedures, and testing data to DOE and potential module manufacturers.
- Circuit design, simulation results, and bill of materials for making gate-driver power supply with air-core transformer and gate drivers with parasitic-inductance based current sensor to DOE.
- Collaborations: ORNL: providing module design specs and supporting on module testing; NREL: advising on module thermal management and supporting C-SAM characterization of sintered-metal joints and thermo-mechanical reliability testing; UArk: providing high-temperature gate driver chips; DOWA: custom-designing and fabricating integrated substrate/heat sink structures for module cooling; SUNY Poly: providing SiC power devices.


> Future Work:

- Selection and evaluation of > 200°C module encapsulant
- Fabrication and testing of a gate-driver power supply with air-core transformer for T_i > 175°C
- Design and testing of a parasitic-inductance based current sensor for $T_i > 175$ °C
- Reliability evaluation by accelerated testing & FEA simulations.

^{*} Any proposed future work is subject to change based on funding levels.

Collaboration

NREL: advise on module thermal designs and support C-SAM characterization of sintered-metal joints and their thermo-mechanical reliability testing.

DOWA: custom-design and fabricate integrated substrate/heat sink structures for module cooling.

University of Arkansas: provide high-temperature gate driver chip.

SUNY-POLY: provide SiC power device.

Proposed Future Research

- ➤ Prototype and test 200°C power supply for gate drivers; package and test with gate driver board and power module; [Key Milestone in June 2022]
- Selection of components and design of the current sensor for hightemperature operation;
- Demonstrate planar packaging technologies in phase-leg modules of SiC MOSFETs working at junction-temperature of 200°C;
- Reliability evaluation of the double-side cooled phase-leg modules.

^{*} Any proposed future work is subject to change based on funding levels.